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Debonding and pull-out processes in 
fibrous composites 

J. K. WELLS* ,  P. W. R. BEAUMONT 
Cambridge University Engineering Department, Trumpington Street, Cambridge, UK 

The processes of debonding and pull-out in fibrous composites are described. Models 
predicting the debond length and the probability distribution of pull-out lengths of fibres 
and bundles are derived. These lengths are functions of the fibre, matrix and interface 
properties. Prediction is then compared with experiment and a simple relationship 
between pull-out and debond lengths is found. An understanding of the debonding and 
pull-out processes is important because they affect the fracture toughness of fibre 
corn posites. 

1. Introduction 
The impact toughness of a fibre-reinforced 
polymer composite is higher than that of either of 
its constituent phases. A number of reasons have 
been proposed [1-3] based on the processes of 
fibre pull-out and debonding which absorb energy 
in the composite. This paper analyses the fracture 
of a composite, enabling the pull.out and 
debonding lengths to be calculated. These processes 
can operate not only on single fibres, but also on 
bundles of fibres. 

2. Description of the failure processes 
Consider a composite of continuous fibres aligned 
parallel to an applied load (Fig. 1). Perpendicular 
to the fibre direction is a notch. Under monotonic 
loading the material at the notch-tip fractures and 
a small crack forms in the matrix. Load, once 
carried by the matrix, is transferred by shear to 
the fibres which are still intact. These shear 
forces eventually become so large that the bor/d 
between fibre and matrix fails. A cylindrical crack 
at the interface propagates from the matrix crack 
surface along the fibre as the applied load increases. 
This process is called debonding. 

Some load transfer between fibre and matrix is 
still possible by interfacial forces due to matrix 
shrinkage on to the fibre during manufacture. This 
friction produces a non-uniform stress along the 
debonded fibre. Because of the variable strength 

of the fibre along its length, the fibre is able to 
break some distance from the matrix crack-plane 
where the stress is highest. After fracture, the 
composite typically shows a matrix crack-plane 
with fibres protruding from it. This process is 
called pull-out. 

3. The process of debonding 
The process of debonding is controlled by two 
parameters: the fibre debond stress, and the rate 
of increase of stress along the length of debonded 
fibre due to friction. After the matrix cracks, the 
fibre stress at the interfacial (debond) crack front 
is the debond stress oa, and the applied fibre stress 
when a length x has debonded is 

o(x) = aa + f (x)  (1) 

where f (x)  is the stress in the fibre caused by 
friction on its surface. When o(x) reaches the 
ultimate strength of the fibre, at, failure occurs 
and the debond length may be determined 
provided oa and f (x)  are known. 

3.1. Calculat ion of  the  d eb o n d  stress 
The debond stress can be predicted using a shear- 
lag analysis [4-6].  The shear stress at the interface 
can be calculated as a function of applied load, 
assuming debonding occurs when the shear 
strength of the interface 7o, is exceeded. In [4-6] 
similar results are obtained; for example Takaku 
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Figure 1 Schematic diagram of composite fracture ahead 
of a notch. 

and Arridge [6] predict that 

1 I- i,'m l 

where E~ is the Young's modulus of the fibre and 
G m the matrix shear modulus. Other derivations 
also agree on the dependence of debond stress on 
re, Ef and G m . The function involving fibre radius, 
re, and the effective radius of its surrounding 
matrix cylinder, rm, depends on the precise fibre 
geometry considered. 

Such stress-based analyses have the disadvan- 
tage of taking no account of any stress concen- 
tration at the crack front and may, therefore, 
overestimate the debond stress. An alternative 
approach based on the energetics of failure is 
described by Outwater and Murphy [7], where 

( 4E,G2el"2 
od = (3 )  

\ re ] 

G2e is the mode 2 critical-strain energy release rate 
for interfacial cracking. Outwater and Murphy's 
derivation of this equation is confusing since they 
do not state whether the model is in the fixed- 
grips or fixed-load condition. Wells [8] re-derived 
their model to clarify this point. Clearly, only if 
there is both sufficient stress to nucleate an 
interfacial crack and a favourable energy balance 
can the crack propagate. 

The most convenient way of distingushing 
between Equations 2 and 3 is to experimentally 
investigate the dependence of debond stress on 
fibre radius. Wells [8] therefore measured the 
debond stress of steel wires of varying diameter 
embedded in epoxy resin, and the results are 
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Figure 2 Variation of debond stress with wire radius. 
Solid line: debond stress calculated from Equation 3 with 
El=  210GPa and G2c = 200Jm -2. Dashed line: debond 
stress from Equation 2 with G m = 1.1 GPa, r o = 20 MPa, 
r m = 10 mm. 

shown in Fig. 2. We see that the debond stress is 
more accurately predicted by the energy 
condition. 

3.2.  I nterfacial  f r ic t ional  stress t ransfer  
The frictional stress transfer between fibre and 
matrix is due to compressive radial stress produced 
both by the shrinkage of the resin during cure, and 
by thermal mismatch effects during cooling. The 
radial stresses can be estimated by a simple 
analysis developed by Harris [9], although the 
model does not take into account tile constraining 
effects of surrounding fibres. 

3.2. 1. Simple linear model 
I f  a fibre is assumed infinitely stiff, there is no 
Poisson contraction transverse to the direction of 
applied load, and the frictional interfacial stress is 
uniform. The stress in a fibre embedded to a 
distance x is therefore 

2rrrfrex 2r~x 
a(x) = r f  

where r~ = #P; # is the coefficient of friction 
between fibre and matrix and P is the average 
radial compressive stress around the fibre, This 
approximation has been used extensively in the 
literature. 

3.2.2. Non-linear model 
Although fibres are generally stiff, the simple 
linear model overestimates the frictional stress 
transfer because Poisson contraction cannot be 



ignored. Full allowance for this effect is made in 
the derivation of Wells [8], which shows that 

o(x) = %(1 -- o -~x) (4) 

where 
eoE~ 2t-tvf E m 

U p  ~ ~J - -  
uf EFf (1  -}- P r n )  

u and E are the Poisson's ratio and Young's 
modulus of fibre and matrix (subscripts f and m 
respectively), # is the coefficient of friction 
between fibre and matrix, rf the fibre radius and 
eo the "misfit strain" between fibre and matrix. 
Equation 4 predicts that the rate of stress build-up 
will fall as the axial fibre load increases. The 
maximum shear stress that can be produced by 
frictional loading is or,  when the Poisson 
contraction of the fibre is equal to the residual 
strain of the matrix. 

If  the origin of the coordinates is taken as the 
debond crack front at which the fibres stress is 
Oa, then Equation 4 becomes 

a ( x )  = % - ( %  - o d ) e  -~x ( s )  

3.3. Calcula t ion of  the  d e b o n d  length 
Failure of a fibre of uniform strength occurs when 
the stress in that portion of fibre between the 
matrix crack surfaces reaches the strength of the 
fibre, of. The debond crack ceases to propagate 
and the debonded length, ld, is therefore given by 
the condition 

at  = % - ( %  - o d )  -~ la /2  

and hence 

l d = ~-ln - - - -  
- -  o f  

where l a is the final debonded length on both sides 
of the matrix crack (Fig. 3). If  ad > Of no 
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Figure 3 Calculation of the debond length. 

debonding occurs; if of > ap and at > a d ,  
debonding extends along the entire length of fibre. 

3.4. E f fec t  o f  re in fo rcemen t  on the  nature 
o f  debond ing  

Equation 3 predicts that low-stiffness or large- 
radius fibres will have a low debond stress. 
Consequently, a phenomenon which may be called 
"bundle debonding" can occur. This process may 
operate even though the fibre debond stress 
exceeds the fibre strength, and no individual fibre 
debonding would be predicted. Bundles consist of 
a group of fibres bonded by resin. They behave as 
large single fibres. Such a bundle has a lower 
stiffness and strength than a single fibre, but with 
a larger radius. The interfacial parameter G2c will 
also be a combination of the pure matrix and 
interface properties. 

After debonding a bundle will have a corru- 
gated surface, and therefore any small movement 
of the bundle with respect to its "socket" will 
cause interlocking of these corrugations. This will 
produce an effective residual compressive strain on 
the bundle of fibres, similar to that of the single- 
fibre case. The stress distribution and debond 
stress of a bundle may be approximated by 
Equations 3 and 5 after substitution of the rel- 
evant material properties. These corrugations may 
also provide an airgap which accounts for the 
whitening observed in debonded glass-fibre com- 
posites. A debonded single fibre would not prod- 
uce a sufficiently large airgap to create such 
whitening effects. 

3,4. 1. Calculation of  bundle properties for 
calculation of  bundle debond length 

The bundle stiffness and strength may be calcu- 
lated using the rule of mixtures, where the fracture 
of weak fibres reduces the strength of the bundle 
to 80% of the ideal rule-of-mixtures prediction 
[10]. Poisson's ratio of a bundle is that of a typical 
composite of appropriate fibre volume fraction 
(v = 0.32). 

The interface parameter G2e is assumed to be a 
linear function of the two constituent material 
properties: 

G2e = 1 lTrrfG1 + (a -- 2r 0G21 (7) 

where G1 and G2 are the critical energy release 
rates for fracture of interface and pure resin 
respectively. The spacing a between fibre centres 
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T A B L E I Variation in debond lengths with specimen type  

Specimen type  No. of  specimens Debond length (mm) Notes 

Observed Predicted 

A 30 

B 90 

C 10 

2.7 -+ 0.2 3.9 Vf = 23% 
r b = 0.5 m m  

5.8 +- 0.6 7.9 Vf = 40% 
r b = 0.45 m m  

7.1 -+ 1.0 8.7 As B with 
G 1 = 0  

around the edge of the bundle is given by the 
square-packing approximation 

~ ( zrr~ l l/2 
a \-V-~-~ ] (8) 

where V~ is the volume fraction of fibres in the 
bundle. 

Wells [8] measured G2 ~ - 5 0 0 J m  -2 for an 
epoxy resin matrix and G1 approximately 50, 2 
and 60 J m -2 for E-glass, Kevlar, and high-strength 
carbon fibres in epoxy respectively. The misfit 
strain between bundle and matrix was found to be- 
about 5%, and the radius of a bundle rb was ~ 
typically 500/2m. 

3.5. Comparison of observed and predicted 
debond lengths in model composites 

Experiments have been carried out on model 
composite specimens, where debond lengths may 
be accurately measured and compared with 
theoretical predictions. The specimens have been 
described previously [3]. Briefly, a specimen 
consisted of a single layer of glass reinforcing tows, 
situated close to the tensile side of a small epoxy 
beam loaded in three-point bending. The observed 
lengths of bundle debonding are shown in Table I, 
each result being the average of at least 100 
measurements (ten measurements per specimen). 
Results for specimens of three types are presented: 

(a) Type A had no weft fibres holding the main 
tows in place, enabling bundle spreading to occur 
during manufacture. 

(b) Type B had a small number of light weft 
fibres present, holding the bundle together and 
reducing the interfibre spacing. This corresponds 
to a composite with a locally higher volume 
fraction. 

(c) Type C were specimens prepared as Type B 
but the fibres were sprayed with mould release 
fluid, producing a weak fibre/matrix bond. 
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Table I also shows the predicted debond lengths 
using Equations 3, 6, 7 and 8, with substitution of 
material properties listed in Table II. Values of G~, 
G2, and misfit strain eo, are those reported in the 
previous section, except in the case of Type C 
specimens where it is assumed that no f ibre-  
matrix bonding occurred and consequently G1 = 
0 in this case. Agreement between observed and 
predicted values is generally good, although the 
predictions are typically 30% higher than the 
observed values. 

4. The process of pull-out 
The fundamental origin of pull-out is the variable 
strength of the reinforcing fibre. In the absence of 
strength-reducing flaws a fibre would break in the 
region of maximum stress (i.e. between the faces 
of a matrix crack), and no pull-out would result. 
However, when a brittle fibre carries a non- 
uniform load along its length the fibre may either 
fracture at a large flaw in a region of low stress, or 
at a minor flaw at a point of higher stress. This is 
shown schematically in Fig. 4. In this case fibre 
fracture will occur at point A away from the 
region of maximum stress, and will produce pull- 
out during crack propagation. 

4.1. A statistical model for pull-out 
After the matrix cracks, the load on a fibre close 
to the crack tip increases causing debonding. 
Friction between fibre and matrix gives rise to a 
non-uniform stress distribution along the fibre 

T A B L E I I Properties of  fibres and epoxy  resin 

Material Strength Young 's  Radius Poisson's  
(MPa) Modulus (gin) ratio 

(GPa) 

Glass fibre 1650 70 7 0.2 
Carbon fibre 2480 230 4 0.2 
Resin 80 3 - 0.35 
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Figure 4 Schematic diagram showing origin of  pull-out. 
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Figure 5 Schematic diagram of  debonded fibre. 

the sum of [1 --P(oj)] for a l l / >  i, i.e. all sections 
more highly loaded than section i*. 

The relative probability of fracture occurring in 
section i is therefore given by 

h P(a ) [l-?(aj)l x (1o) 
j=i+l 

Equation 10 may be re-expressed to present an 
integral form of the cumulative probability 
function 

, [rZdl2 } dx") l,zal2 l~lal2 
F(x)= .f: P[a(x )][Jx, {1-P[a(x")] dx'/Jo P[a(x')][Jx' {1--P[o'(x")]}dx") dx' ( l l)  

length. The variable strength of a brittle fibre is 
controlled by the distribution of flaws along its 
length. Experiments show that the strength of 
such material is well described by a Weibull 
distribution. On loading the material up to a stress 
o, a fraction of the fibres P(a) will fail; in its 
simplest form 

e(a) = 1 -- exp [-- (a/ao) rn ] (9) 

where o0 is a characteristic strength and m the 
Weibull modulus. 

Consider a debonded fibre with a series of 
sections of length 6x to be non-uniformly loaded 
as in Fig. 5. The stress in the ith section increases 
from zero to oi as the debond crack propagates 
along the fibre. The nth section is at the point of 
maximum fibre stress, i.e. in the plane of the 
matrix crack. The probability of failure in loading 
section i from zero load to o I is given by the 
cumulative probability of failure P(oi). 

However, the probability of failure occurring in 
the ith segment is not simply P(oi). It also depends 
upon the probability that a more highly stressed 
section has not broken before the flaw in the ith 
section causes failure of the fibre. This is given by 

The pull-out length is given by 

ld 
lp = - ~ - - X  

and F(x') is the cumulative probability of x being 
less than x'. Consequently the cumulative 
probability distribution of the pull-out length 
being less than or equal to lp is 

The model assumes that the entire flaw 
spectrum is repeated in a length of fibre which is 
small by comparison with the pull-out length. This 
is justified since the average strength of the fibres 
changes only slowly with increasing gauge length. 
It implies that the full range of flaws must be 
present in short lengths of fibre. 

4.2. The effect of the reinforcement on the 
nature of pull-out 

For certain composites the debonding of single 
fibres does not occur because the debond stress is 
greater than the fibre strength. This behaviour is 
anticipated in materials with a strong fibre-matrix 

*An allowance for the probability of  a severe flaw causing fracture in a section under lower stress, before fibre failure 
occurs in section i, is made by the use o f  the cumulative Weibull distribution P(cr). 
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Figure 6 Pull-out in (a) glass, (b) Kevlar, and (c) carbon- 
fibre reinforced plastic. 

bond or high fibre stiffness, as found in carbon- 
fibre reinforced systems. In such cases the pull-out 
of individual fibres is not possible, but instead a 
bundle of fibres (which debonds more easily than 
the individual fibres) behaves as a large fibre. 
Although a composite, the bundle still has a 
variable strength which can be described by a 
Weibull distribution with a Weibull modulus about 
3.5 times larger than the single fibre, and a 
strength of about 80% of the rule of mixture 
prediction (Harlow and Pheonix [10]). The stress 
distribution in the bundle is similar to that in the 
single fibre (Section 3). 

The nature of  the pull-out process is therefore 
controlled by the debonding process. If  fibres can 
debond, they will pull-out individually. Glass and 
Kevlart should normally do this. However, if only 
the bundle debonds then the bundle will fracture 
away from the matrix crack plane and pull-out as 
a small piece of intact composite; this is what 
CFRP is predicted to do. The process may be ana- 
lysed using Equation 11 when the appropriate sub- 
stitutions are made. In general, a composite may 
show a combination of the two types of pull-out. 

4.2. 1. Fractographic observations of  
pull-out 

Fracture samples of epoxy containing E-glass, 
Kevlar 49 and carbon (Grafil EX-AS) have been 
examined in a scanning electron microscope (SEM) 
in order to verify the above predictions. Fig. 6 
shows the fracture surface of a unidirectional or 
[0/90]s laminate. Glass and Kevlar show individual 
fibre pull-out with little or no matrix between the 
fibres. By contrast, the carbon-fibre reinforced 
epoxy shows a solid bundle which has fractured 
and pulled out with intact matrix binding the 
fibres. These observations are in agreement with 
the debonding behaviour predicted in Section 4.2, 
although variations in the properties of the f ibre-  
matrix bond could allow the other mode of pull. 
out to occur. 

4.3. Comparison of predicted and observed 
distributions in composites 

For a typical composite with brittle fibre 
reinforcement the function P(a) is of the Weibull 
form (Equation 9), and for a debonded fibre the 
stress distribution is 

a(x) = % -  ( % -  ad)e-~X 

The integral (Equation 11) has been evaluated 
numerically for various materials and the predic- 
tions compared with experiment. 

4.3. 1. Results for glass-fibre reinforced 
plastic (GFRP) 

Beaumont and Anstice [11] measured a large num- 
ber of pull-out lengths in GFRP in an effort to 

~f ARhough Kevlar is a polymeric fibre it appears to behave as a brittle material. In the absence of any detailed information, 
the Weibull distribution (with a Weibull modulus equal to that of glass and carbon) is used to characterize the fibre 
strength. 
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ascertain their distribution. The pull-out lengths 
were well described by a Weibull distribution, but 
of a much lower modulus than for the fibre 
strength distribution. The average of the Weibull 
parameters from over 2000 measurements of pull- 
out lengths are 

[o = 0.24 • 0.08 mm 

r~ = 2.2 +- 0.42 

This distribution is shown in Fig. 7 and is 
compared with the prediction of Equation 11, 
using typical E-glass/epoxy properties listed in 
Table II. Good agreement is found between the 
predicted and experimental distributions except at 
small pull-out lengths. The model predicts that the 
most probable pull-out length (the point at which 
the slope is maximized) is at lp = 0, which is 
intuitively correct since the stress is maximized at 
that point. By comparison, the Weibull distri- 
bution predicts zero probability of  zero-length 
pull-outs. 

4.3.2. Results for carbon-fibre reinforced 
plastic (CFRP) 

The procedure described in Section 4.3.1 has been 
applied to bundle putt-out of  high-strength carbon 
fibres using data from Wells [8]. Characteristic 

Weibull parameters for 500 measurements were 

= 0 . 4 7 •  

= 1.9•  

This distribution is shown in Fig. 8, and may be 
compared with the result from Equation 11 using 
typical values for carbon fibre in epoxy (see Table 
II) and a bundle misfit strain of 3%. The main 
differences in shape of the distributions, noted in 
Section 4.3.1, are evident although agreement 
between average values is good. 

4.4. A method for the rapid calculation of 
pull-out lengths 

So far the theory has successfully predicted the 
shape and position of the cumulative probability 
distributions for both individual fibre and bundle 
pull-out cases. However, calculations of the 
complete probability distribution is time- 
consuming, and often an average value of the pull- 
out length is all that is required. Consequently the 
effect of changing composite properties on the 
shape and position of the distribution has been 
investigated, and correlations between pull-out 
and debond lengths have been sought as a means 
of convenient prediction. 
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4.4. 1. Effect of  varying material properties 
on pull-out distributions 

From Equation 11, the pull-out length distribution 
is affected by any parameters which reflect 
changes in the flaw or stress distributions in the 
fibre. Changes in most of these parameters will 
also affect the debond length. Fig. 9 shows the 
effect of varying fibre misfit strain, Weibull 
modulus, fibre strength and radius on the prob- 
ability distribution, using values which are other- 
wise typical of an E-glass/epoxy composite. In 
particular, it should be noted that the distribution 
is relatively insensitive to the Weibull modulus. 

4.4.2. Correlation between fibre pull-out 
and fibre debond length 

Fig. 10 shows the relationship between the average 
pull-out length [p and the fibre debond length l d 
(as calculated using Equation 6) when several 
parameters vary. The average pull-out length for 
both glass and Kevlar reinforced material may be 
estimated by 

la 

This approximation is accurate to within -+ 10% 
for lp < 0.3 mm (or la < 2.1 mm). The behaviour 
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due to changing G1, and therefore the debond 
stress, is least well predicted. 

4.4.3. Correlation between bundle pull-out 
and bundle debond length 

Fig. 11 shows a similar variation between pull-out 
and debond lengths for typical high-strength 
carbon-fibre composite. There is a correlation 
between l v and l d for changes of fibre strength, 
radius and fibre misfit strain. However, as noted in 
the previous section, changes due to variations in 
debond stress do not follow the same trend. 
Nevertheless an approximate relationship may be 
found in the region 0 . 2 2 m m < / p  < 0.32ram, or 
7.5 mm < la < 12 mm, to an accuracy of -+ 20%, 
namely 

la 
[p = ~-~ (12) 

5.  S u m m a r y  and conclusions 
1.The energy absorptiofl in composites is 

dependent on the length of debonding and pull- 
out. These processes have been studied to enable the 
lengths to be calculated from fibre, resin and 
interface properties. 

2. The study shows that two types of 
debonding are possible, namely single-fibre and 
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bundle debonding. Debond lengths have been 
measured and found to be in agreement with the 
predictions of the theory. 

3. A model has been proposed for the fracture 
of brittle fibres under non-uniform stress, pre- 
dicting the probability of fracture sites. As a result 
of the two types of debonding (single-fibre and 
bundle), two corresponding modes of pull-out 
have been proposed and observed in practice. 
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